

CHEMICAL REACTION AND REACTOR ENGINEERING SIMULATIONS

CERRES documentation
v0.02b

18. 4. 2021

Author: Damjan Lašič Jurković, National Institute of Chemistry, Ljubljana, Slovenia

About

CERRES (Chemical Reaction and Reactor Engineering Simulations) is a program designed for the

simulation of various types of chemical reactors under different operating conditions with user-

supplied chemistry, allowing for complex bulk and surface reaction (micro)kinetics. Furthermore, it

provides additional modes of operation such as the comparison of the model results to

experimentally measured values and reaction rate parameter optimization (fitting). The main goals

of the software are computing efficiency, ease of use and wide functionality. CERRES is being

developed by Damjan Lašič Jurković at the Department of Catalysis and Chemical Reaction

Engineering at the National Institute of Chemistry in Ljubljana, Slovenia. Most of the software

(including the UI) is written in Python while the computational backend is implemented in C.

The main features of the software are:

• Simulation of different types of chemical reactors

• Complex user-defined chemistry

• Model-experiment compare, parameter optimization, sensitivity analysis

• Efficient computation

• Ease of use

• Relevant examples from literature

The usage of the program is free of charge for any academic, educational or personal use; we only

require the users to cite the CERRES webpage (www.cerres.org) and later the main CERRES paper

(not yet released) in any scientific publications containing results obtained by the program. For

commercial/for-profit use, please contact the developers. See the full license for more information.

Please note that this is the Beta version of the software, and thus some bugs are expected.

We are always happy to receive any feedback, bug reports or suggestions for additional features!

Contact:

Damjan Lašič Jurković is no longer employed at National Institute of Chemistry, however, you can
still contact him via damjan.lasic@gmail.com. For more “official” enquires, please contact the
department head:

prof. dr. Blaž Likozar
Department of Catalysis and Chemical Reaction Engineering
National Institute of Chemistry
Hajdrihova 19
1000 Ljubljana
Slovenia
e-mail: blaz.likozar@ki.si

http://www.cerres.org/
mailto:damjan.lasic@gmail.com
mailto:blaz.likozar@ki.si

Table of contents

1 License ... 1

2 Installation procedure and requirements ... 2

2.1 Requirements .. 2

2.2 Installation .. 2

2.3 Bugs/Troubleshooting/Feedback .. 2

3 Using CERRES .. 3

3.1 The graphical user interface (GUI) .. 3

3.2 Input files .. 3

3.2.1 Input parameters file .. 3

3.2.2 Chemistry file .. 3

3.2.3 Experimental data file ... 3

3.3 Operation modes .. 4

3.3.1 Single parameter ... 4

3.3.2 Multi parameter .. 4

3.3.3 Model-Exp. Compare .. 4

3.3.4 Optimization.. 4

3.3.5 Sensitivity .. 4

3.4 Input parameters .. 5

3.4.1 General .. 5

3.4.2 Reactor setup .. 5

3.4.3 Operating conditions .. 5

3.4.4 Solver settings ... 6

3.4.5 Data export ... 6

3.4.6 Results plotting ... 6

3.4.7 Optimization settings .. 7

3.5 Calculations of various result types .. 7

3.5.1 Concentration ... 7

3.5.2 Partial concentration .. 7

3.5.3 Conversion .. 7

3.5.4 Selectivity .. 8

3.5.5 Site balance ... 8

3.5.6 Mass balance ... 8

3.5.7 Total concentration ... 9

4 Chemistry .. 10

4.1 Species and phases ... 10

4.1.1 Gas phase .. 10

4.1.2 Liquid phase .. 10

4.1.3 Solid (catalyst) phase .. 10

4.1.4 Catalytic sites .. 10

4.1.5 Species definition .. 10

4.1.6 Species naming ... 11

4.2 Reactions ... 12

4.2.1 Reagents and products ... 12

4.2.2 Transfer between phases .. 13

4.2.3 Transfer through the membrane (membrane reactors) ... 13

4.2.4 Reaction rates ... 14

4.2.5 Reaction constant modes ... 14

4.2.6 User defined rate expressions .. 15

4.2.7 User-defined variables .. 16

4.3 Input chemistry files.. 16

4.4 Chemistry editor (GUI) .. 17

4.5 Chemistry error checks in CERRES .. 17

4.5.1 Species consistency check ... 17

4.5.2 Stoichiometry check .. 17

4.5.3 User defined rate check .. 18

5 Models, reactors, equations and transport phenomena .. 19

5.1 General about the models .. 19

5.2 Initial conditions .. 19

5.3 Species reaction mass balance terms ... 19

5.4 Reactor types and transport phenomena ... 20

5.4.1 Batch reactor ... 20

5.4.2 Continuous stirred-tank reactor (CSTR) .. 20

5.4.3 Fixed bulk concentration reactor .. 21

5.4.4 Batch (three-phase) .. 21

5.4.5 CSTR (three-phase) ... 21

5.4.6 CSTR (membrane) ... 22

5.4.7 Plug flow reactor (PFR).. 22

5.4.8 PFR (with diffusion) ... 23

5.4.9 PFR (fast) ... 23

5.4.10 PFR (membrane) ... 23

5.4.11 PFR (membrane with diffusion) .. 24

5.4.12 PFR (membrane - fast) .. 24

5.4.13 Parallel plates channel (2D) .. 24

5.4.14 Round channel (2D)... 25

5.5 Mass transport limitations and other phenomena ... 26

5.5.1 Mass transfer limitation from the bulk to the catalytic surface 26

5.5.2 Internal mass transfer limitations ... 27

5.5.3 Velocity change ... 27

5.5.4 Three phase reactors mass transfer ... 27

5.5.5 Membrane reactor mass transfer ... 29

6 Used libraries and programs ... 31

7 Input files format (advanced) ... 33

7.1 File format, parsing and sections .. 33

7.2 List of the used section tokens ... 33

7.2.1 General .. 33

7.2.2 Input parameters files ... 33

7.2.3 Chemistry files ... 33

7.2.4 Experimental data files ... 33

7.3 Complete list of CERRES inputs ... 34

8 References/literature .. 35

9 Appendix 1: Licenses of the used libraries .. 36

1

1 License
The present version of CERRES is an open Beta version with the following license (licenses of the

utilised libraries and bundled MinGW-w64 distribution of GNU GCC compiler are included in the

“Used libraries and programs” chapter):

“

CERRES - Chemical Reaction and Reactor Engineering Simulations

Copyright (C) 2020 Damjan Lašič Jurković

All rights reserved.

By continuing to install or use this software (CERRES), you agree to be bound by

the terms of this agreement.

CERRES is free (as in no cost) for academic, educational and personal use. In any

case where the results of CERRES are used in a scientific publications, it is

required that authors give the credit to the developers by citing the CERRES

website (www.cerres.org). For any other cases, including but no limited to

commercial or for-profit use (primarily intended for or directed towards commercial

advantage or monetary compensation), the usage of CERRES is prohibited. In order to

use CERRES for such applications, please contact the developers for a different

licensing arrangement.

It is forbidden to distribute CERRES in any form. It is forbidden to modify CERRES

binaries or attempt to reverse-engineer the source code.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

NOTE:

The CERRES installer also installs the MinGW-w64 binaries (which include the GNU

GCC compiler). These are a separate program invoked by CERRES via a subprocess

call. The binaries are located in the <CERRES installation

folder>/cvode_execution/mingw_libs/mingw. The program is covered by its own GNU

GPLv3+ license, available in the root folder of CERRES installation. The source

code is made available online in the public CERRES repository

(https://github.com/DamjanLasicJurkovic/CERRES_public).

“

2

2 Installation procedure and requirements

2.1 Requirements

The current version is supported on x64 conforming CPUs (nearly all of Intel and AMD 64-bit

processors). It is only supported for the Windows OS (tested on Windows 7, 8.1 and 10).

2.2 Installation

The installation process is designed to be as seamless as possible. Just run the CERRES installer

(obtained from www.cerres.com). It should install CERRES and any other required dependencies.

After the installer completes, the program is ready for use. It is recommended to first run the

CERRES test (via the ‘Help’ menu in the UI), which runs some examples and thus checks that the

software is working as intended.

2.3 Bugs/Troubleshooting/Feedback

Error messages in the CERRES output console are supposed to be as informative as possible in order

to provide the user with most probable solutions. However, since this is the Beta version of the

program, we expect some errors may be found by users which were not predicted and are not

covered by the error handling procedures in CERRES. Therefore, a built-in bug report generation is

provided, which produces a bug report file including the state of the output console, input

parameters and copies of experiment and chemistry data – everything the developers need to

reproduce the bug. If all else fails, we would be happy to receive also any user description of

observed buggy behaviour. All bug reports, comments, feature requests and (constructive) criticism

should be sent to damjan.lasic@gmail.com.

http://www.cerres.com/
mailto:damjan.lasic@gmail.com

3

3 Using CERRES
The usage of the program is designed to be easy and intuitive without any programming knowledge

required. However, users should be familiar with general approaches and techniques of

mathematical modelling of reactors and chemical processes. Currently, the usage is only supported

through the graphical user interface. In later iterations, command line usage and python API may be

implemented.

3.1 The graphical user interface (GUI)

The graphical user interface is used to open/edit/save the input parameter files and run them. It

contains an output console where the prints and error message are printed. In addition, “Chemistry

editor” and “Experimental data editor” are also provided for editing chemistry and experimental

data files, respectively.

In order to run a file with CERRES, first load it via the “Load” or “Load example” menus. Then,

clicking the “Run” button will run the current file, which contains all the required parameters. In

most cases, this will also result in plotting the resulting data.

3.2 Input files

There are three main types of input files used by CERRES: input parameters files, chemistry files and

experimental data files. All are described in more detail below.

3.2.1 Input parameters file

This is a text file containing all of the input parameters required for CERRES to run a simulation. The

input parameter file also contains the names of chemistry and experimental data files to use. Can be

loaded from or saved to any directory, but it’s recommended to keep all input files in

“~user\AppData\Local\cerres\input_files\parameter_files”.

3.2.2 Chemistry file

The chemistry file contains the data about all of the species, reactions and reaction rate constants

for a specific system. Must be located in “~user\AppData\Local\cerres\input_files\chemistry_files”.

The path can be opened in system viewer from the user interface as well for easier locating. It is

recommended to edit the chemistry files via the provided “Chemistry editor”. This will always assure

correct formatting and file structure. The chemistry file is intentionally separate from the parameter

file so different input parameters files can use the same chemistry data without duplication. The files

are in CSV format, so users can also edit them in, for example, Microsoft Excel or LibreOffice Calc,

but should be careful to retain the original formatting (commas as separators, utf-8 encoding). It is

recommended to open the file in “Chemistry editor” and perform the “Check” procedure after any

manual adjustments.

3.2.3 Experimental data file

Only used when experimental data is needed (“Exp.-Model compare” and “Optimization” operating

modes). Contains the data about the number of experiments performed, experimental conditions

and measured concentrations of different species. Can be edited with “Experimental data editor”.

Must be located in “~user\AppData\Local\cerres\input_files\exp_data”. As with the chemistry files,

these can also be edited in any CSV supporting editors.

4

3.3 Operation modes

CERRES supports five different operation modes, which dictate how the simulations are performed

and ultimately the type of the results generated. The operating mode is set in the Input parameters

file (“General” tab). The operating modes are:

3.3.1 Single parameter

Simulation using a single set of operating conditions. Result is the time-evolution of (position-

dependent) concentrations, surface coverages, conversions and selectivities of all the chemical

species in the reactor. No experimental data file needed for this simulation. The “WGS on Cu – plug

flow reactor (PFR)” is an example of Single parameter simulation.

3.3.2 Multi parameter

Same as single parameter but performed multiple times at different operating conditions. Steady-

state outlet concentrations/conversions/selectivities can be compared via the “Multi” plot.

Furthermore, all of the sub-simulations can be plotted/exported in the same manner as the single

parameter plot. No experimental data file needed for this simulation. The “WGS on Cu – surface

coverages at diff P. and T.” is an example of Multi parameter simulation.

3.3.3 Model-Exp. Compare

Comparison between experimental and model data. Experimental data file is needed for this mode.

The model is computed, then the results are compared to experimentally measured data either in

the form of “Parity” or “Outlet” plots. Whichever conditions available from the experimental data

file are taken from there, while the rest are taken from the input file. “Methanol synthesis on CuZnAl

– Exp.-model compare” is an example of such comparison.

3.3.4 Optimization

Kinetic parameter optimization using experimental data. Experimental data file is needed for this

mode. Additional “Optimization” tab is available in the GUI for this mode, where it is possible to set

which parameters to optimize. Optimized can be both/either the catalyst site concentrations (which

are otherwise an input to the model), and/or the reaction rate constants parameters. The

optimization algorithm recursively computes the model values at experimental operating conditions

(like in “Model-Exp. Compare”), computes the sum of squared differences between the

experimental and model points (for selected, optionally weighted species), then adjusts the

parameters to minimize this sum, which achieves a better fit between the model and experiments.

The optimization routines from the SciPy[1] library are used for this. More information can be found

at the SciPy website (SciPy minimize). “Methanol synthesis on CuZnAl – A + Ea optimization” is an

example of this operation mode, where the pre-exponential factor and activation energy of one of

the reactions are optimized to improve the fit from the “Model-Exp. Compare” example above.

3.3.5 Sensitivity

Sensitivity analysis is performed by changing some parameters of different reactions and comparing

its effect on model concentrations. No experimental data is required for this operation mode. The

procedure is as follows. One of the reaction rate parameters is selected (via inputs) – for example,

the forward rate activation energy (Ea_for). A “change factor” is also selected, for example, 1.1. The

program will then iterate over all of the reactions in the chemistry file. For each reaction, the

selected parameter is multiplied by the change factor, and the difference in selected value (for

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

5

example, one of the products conversions), is noted compared to unchanged constants. The same is

done for dividing by the parameter value with said factor. Then, the results are plotted in a graph to

compare the effects of the changes for each of the reactions. Additionally, a threshold can be

applied to only display the reactions with some % of effect, which is handy for big systems. The

sensitivity analysis can be used for example for model reduction, or for determining the most

important reactions for optimization purposes. The example file “Butane dehydrogenation –

sensitivity analysis” demonstrates this mode on a system with 107 reactions, where only handfuls

are identified as significant. The selected parameter and the factor are set in the “Solver settings”

tab.

3.4 Input parameters

CERRES performs each run on a set of input parameters. These parameters are provided by the user

through the GUI, and can also be saved as a .txt file (Input parameters file). Generally, the inputs are

either checkboxes (yes or no), drop-menus (selection among options) and entries (user input values).

All individual inputs have information widgets which display the description, type, units, format,

default value etc. of the specific input, so they are not individually explained here. Additionally, the

entries are coloured red when the input is not of the correct format.

In the GUI, the inputs are logically separated into different subsets with tabs with the subset name.

Each tab is further divided into short titled sections to logically group the parameters. Below, each

subset of input parameters is explained in more detail.

3.4.1 General

The general tab contains the names of experimental (only used when needed) and chemistry files

(always needed). The operation mode is selected in the general tab as well. The general tab also

includes the file’s title, author, description and references.

3.4.2 Reactor setup

In the reactor setup tab, the reactor type is selected. For the selected reactor, various other

parameters are then available (while others being greyed out). These include information about the

initial state of the bulk phase concentrations at simulation start, reactor dimensions, number of

discretization finite volumes for multi-dimensional reactors and which of the mass transport

limitation phenomena to use. Some of the values that would be expected here (like reactor volume)

are rather included in the operating conditions tab, because different values can be used in multi

parameter simulations.

3.4.3 Operating conditions

The operating conditions tab contains different parameters like temperature, pressure, flow rate etc.

Two different types are used for the data, “Float arrays” and “Lists of float arrays”. Each element of a

float array corresponds to one of the many simulations to perform. So, for example, “Temperature”

is of type float array. If we are doing 5 simulations at different temperatures, the input could look

something like [100,200,300,400,500]. The first simulations will be at 100 °C, while the last at 500 °C.

“Gas partial concentrations” is an example of a “List of float arrays”. Each element must be the

length of the amount of gas species in the chemistry file. So for example, if H2 and CO2 are the only

gas species in the gas file, and we are doing 5 simulations as above, we may input something like

[[1,1],[1,2],[1,3],[1,1],[1,1]]. In this case, equimolar H2/CO2 ratio would be used at simulations at

6

temperatures of 100, 400 and 500 °C, while ratios of 1:2 and 1:3 would be used for 200 and 300 °C,

respectively. The entry will be coloured red if the format is incorrect.

There are certain rules for the lengths of the operating conditions arrays/lists. Generally, all of the

lists that are not of length 1 (ex. [5] or [[1,2,3]]) should be of the same length (=the nr of performed

simulations). Those with a length of 1 will be assumed to be the same value for all simulations. So, in

the above case, if Temperature was [100], 100 °C would be taken for all five of the H2/CO2 ratios.

The exception to the above rule is the use of permutation. If any condition is selected to be

permuted, it can have any length. For each element in the permuted conditions, ALL of the other

conditions will be replicated. For the above example, if we set Pressure to be permuted with a value

of [1e5, 2e5, 5e5], 15 total simulations would be performed, as the five temperatures and H2/CO2

ratios would be repeated for the pressures of 1, 2 and 5 bar. Permuting multiple values will

recursively multiplicatively expand the number of simulations, which can reach very high numbers if

not careful.

In cases where experimental data is used, the operating conditions values that are included in the

experimental data are given precedence. For those conditions, the values in the input file are

disregarded. Permutation does not work with operation modes which implement experimental data.

Additionally, user defined variables’ values can be defined here. The user defined variables must

match those defined in the chemistry file. User defined variables are explained in more detail in the

“Chemistry” section.

3.4.4 Solver settings

The settings for the numerical ODE solving backend can be set here. The backend is implemented in

C, utilizing the CVODE[2] solver from the SUNDIALS[3] library. The C code for the actual ODE

functions is dynamically generated from the chemistry data and compiled using the GNU GCC

compiler (https://gcc.gnu.org/) on the fly. The simulations can be multi-threaded on the simulation

level. This means that for any run with multiple simulations (like “Multi parameter”, “Exp.-Model

compare” and “Optimization” operation modes), the number of simulations is divided amongst

multiple threads. Dividing a single simulation is not supported, and in most cases, the overhead

would not be worth it.

3.4.5 Data export

When “Export after computing” is checked, the results will be automatically exported after

computation. Additionally, the export can be performed after computation by clicking the “Export

now” button. Different kinds of exported data can be selected in this tab.

3.4.6 Results plotting

When “Plot after computing” and “Show image” are enabled, the results are automatically plotted

and displayed as separate window figures after the run. They can also be manually plotted with the

“Plot now” button after computation. Settings for the individual plot types can be set in this tab.

Note that not all plot types are compatible with all operation modes – an error will be displayed in

the case of incompatibility. The images can also be saved as PNG files with the chosen DPI. The plots

are generated using the Matplotlib library.[4]

https://gcc.gnu.org/

7

3.4.7 Optimization settings

This tab is only available when the selected operation mode is “Optimization”. The generation of this

tab depends on the Chemistry file (set in the General tab), and a warning will be shown if the

Chemistry file cannot be loaded or has errors. If the Chemistry file is legal, lists of species and

reactions will be generated from which the user can select the appropriate species and parameters

for regression. Boundaries and initial values (relative – default 1) can be set in this tab by the user, as

well as additional optimization settings.

3.5 Calculations of various result types

In CERRES, different result types such as concentration, partial concentration, selectivity and

conversion can be obtained, plotted and exported. For clarity and because all of them are not

unambiguous for some of the reactor types the calculations are included below.

3.5.1 Concentration

The most straightforward one, all of the concentrations are in mol/L for gas and liquid species and in

surface coverage fraction (unit-less) for adsorbed and site species.

3.5.2 Partial concentration

Partial concentration is generally computed as the molar ratios of all bulk phase (gas or liquid)

species in the system, computed as:

𝑦𝑖 =
𝑐𝑖

∑ 𝑐𝑗
𝑛𝑟 𝑏𝑢𝑙𝑘
𝑗=0

Where yi is the partial concentration of species i, and ci and cj are concentrations of species i and j,

respectively. The partial concentrations of all bulk species add up to 1.

In the cases of three-phase reactors, the partial concentration is calculated for the gas phase only.

For membrane reactors, it is computed separately for retentate and permeate species, both

summing to 1, making a total for all bulk species 2.

3.5.3 Conversion

Conversion is defined as the fraction of any inlet species that is converted, that is removed during

the reaction process. It is only computed for the species that have non-zero inlet concentrations.

Negative conversions indicate that more species exits than is consumed in the reactor, meaning that

is additionally generated through some reactions. Conversions are calculated by the following

formula:

𝑥𝑖 =
𝑐𝑖,𝑖𝑛𝑙𝑒𝑡𝐹𝑖𝑛𝑙𝑒𝑡 − 𝑐𝑖,𝑜𝑢𝑡𝑙𝑒𝑡𝐹𝑜𝑢𝑡𝑙𝑒𝑡

𝑐𝑖𝐹𝑖𝑛𝑙𝑒𝑡

Where ci,inlet and ci,outlet are inlet and outlet concentrations of species i and Finlet and Foutlet are the inlet

and outlet total volumetric flow rates. In case of batch reactors, the concentrations without the flow

rates are considered in the equation. In case of the three phase CSTR reactor, gas phase conversions

(the phase with an inlet and an outlet) is based on flow rates, while liquid phase conversions are

based on the initial concentration, if any.

8

For membrane reactors, the conversions are computed for the coupled species as if they were the

same species (and as if the outlet flows from the retentate and permeate side were mixed). For the

coupled species, the same value is reported for both “_ret” and “_perm” variants.

3.5.4 Selectivity

Selectivity is computed for each of the products, meaning each of the species with a zero inlet

concentration. It calculated based on a specified element (in the “Solver settings”). It is defined as

the amount of outlet moles of the element in some product divided by the total moles of the

element in all products, as seen below.

𝑠𝑒𝑙𝑖 =
𝑁𝐸,𝑖𝑐𝑖

∑ 𝑁𝐸,𝑗𝑐𝑗
𝑛𝑟 𝑝𝑟𝑜𝑑
𝑗=0

seli is the selectivity of product i and NE,i and NE,j are the number of moles of element E in the

products i and j, respectively. The selectivities of all products add up to 1.

For batch reactors, products are considered as those with 0 initial concentrations (bulk only – gas

and liquid). For three phase CSTR reactor, selectivities are meaningless as they would depend on the

elapsed time of the process (gas is being removed while liquid is stationary), and are therefore set to

0, as is for the fixed gas reactor. For membrane reactors, the coupled species are again considered to

be the same and mixed retentate and permeate flows are taken into account for selectivity

calculations.

3.5.5 Site balance

Defined as the sum of all species’ surface coverages, including free sites. Deviations from 1 can occur

from incorrect reaction stoichiometry which can results in generation or consumption of total sites.

Small deviations are otherwise expected due to numerical errors (very roughly speaking, less than

1e-8 in most cases, depending on solver tolerances). In some rare cases, numerical errors can lead to

high deviations, especially with stiff systems with extremely long simulation times, where floating

point rounding errors can accumulate over a large amount of solver steps.

3.5.6 Mass balance

The mass balance is computed as the fraction of outlet amount of each of the elements in the

system (like C, H, O) compared to its inlet amount. Deviations can occur from incorrect reaction

stoichiometry which can results in generation or consumption of various elements. Small deviations

are otherwise expected due to numerical errors (very roughly speaking, less than 1e-8 in most

cases). For batch reactors, it is instead computed as the sum of all moles of elements in the system

compared to the initial values (including the catalytic sites). For membrane reactors, it is computed

as if the inlet and outlet retentate and permeate flows were mixed. There are various variants of

how mass balance is printed after computation (Solver settings). Mass balance can also be exported

(Export settings).

average: (default) Defined as one minus the quotient of total inlet and outlet molar flow for each of

the elements in all species. It therefore represents the deviation from ideal results (should be 0).

all: Prints the above average mass imbalance for each element separately.

full: Prints same as for All but does so for each problem rather than the average.

none: Doesn’t print the mass balance. Also doesn’t print the site balance.

9

3.5.7 Total concentration

The total concentration is computed for the bulk species, and is to be used for gas systems to check

if the total pressure of the system equals the inlet pressure (for example, to see if “Velocity change”

setting is required). It is calculated as a sum of all the bulk species and in the case of three phase

systems as the sum of all gas species.

10

4 Chemistry
The models implemented in CERRES consider a specific chemistry set, which includes the phases,

species, reactions, and reaction rate definitions for a certain system. In order to decouple this part

from other parameters, the chemistry parameters are saved as separate chemistry files, which can

be edited independently and used in multiple different models. This chapter covers the chemistry

implementation and rules.

4.1 Species and phases

Each chemistry set contains a list of species related to a specific phase. Three different phases are

distinguished: gas phase, liquid phase and solid phase. Most of the reactor models contain only 1-2

phases, for example, gas phase and solid (catalyst) phase.

4.1.1 Gas phase

Gas phase is considered as an ideal gas mixture, composed of the defined gas-phase species. The

pressure of the gas phase is equal to the sum of partial pressures of all species and is in most cases

constant and defined with the operating conditions for the certain model.

4.1.2 Liquid phase

Liquid phase is considered as an inert liquid carrier which contains certain concentrations of liquid-

phase species. Contrary to the gas phase, the inert liquid carrier is implicitly assumed so that the

liquid phase volume does not change.

4.1.3 Solid (catalyst) phase

The solid phase in CERRES implies a catalytic material. All of the solid-phase species are species that

are adsorbed (chemisorbed) on the catalytic surface. Therefore, this is a not a solid-phase per se, but

denotes the adsorbed species. The amount of the possible adsorption sites is defined in the input

parameters as the concentration of active sites per volume of catalyst, and the amount of catalyst in

the reactor is derived from the provided void fraction parameter. The surface amounts of different

species are expressed in dimensionless surface coverages.

4.1.4 Catalytic sites

In CERRES, it is possible to express systems with multiple different catalytic sites. This allows user to

compute models with simultaneous reactions on two or more different catalytic surfaces with

different reaction sets, and even interactions between different catalytic sites (for example, both Zn

and Cu sites in a CuZnAl catalyst). There are two different definitions of relations between different

sites, which are either ‘mixed’ or ‘separated’, and are defined by the user. With separated sites, each

site type is considered as a separate surface which cannot be coupled with another surface other

than by desorption and re-adsorption of the species. Mixed sites imply a perfectly distributed

mixture of sites, where reactions can occur between species adsorbed on different site types, and

species can be adsorbed on two different sites at once. Furthermore, the dimensionless coverages of

all adsorbed species and free sites sum to 1 in the case of mixed sites, and to N in the case of N

separated sites.

4.1.5 Species definition

All of the species in a chemistry set are explicitly defined for each phase. It is required that all of the

species’ names are unique. Some systems may only utilize one of the phases (for example,

11

homogenous kinetics problem in the gas phase), any combination of two phases or all three phases.

In addition to the gas phase, liquid phase and solid phase species, the catalytic site species have to

be explicitly defined as well. This is to improve the robustness of further stoichiometry and

consistency checks, and is also used in equation generation to determine which site some reactions

happen on.

4.1.6 Species naming

All of the species names must be unique. The allowed characters are uppercase letters (A-Z),

lowercase letters (a-z), numbers (0-9) and the special characters (*, #, %, &). The latter are

conventionally used to denote catalytic surface sites. The species names should follow the standard

chemical naming, so the species consists of elements, which is any group of letters starting with an

uppercase or one of the special symbols. For example, He, H, O, $, *, *a, Cl are considered a single

element and will be computed as such in the stoichiometry checker. Therefore, the species names

cannot begin with a digit or a lowercase character, also a lowercase character cannot follow any digit

in the species. All of the species may have a suffix that is ignored by the stoichiometry checker in

order to make them unique. The suffix starts with an underscore (_) and can contain any letter but

no numbers or other symbols. Empty suffixes are not allowed. For example, a user can denote gas

phase and liquid phase hydrogen by having the species H2_g and H2_aq. The catalytic sites can only

be of one element length and contain no numbers and no underscored suffix. Any whitespace

anywhere in the species names is ignored.

Examples of legal spec names:

H2, CO2, COO, COO*, COO#_two, H2_gas, CO2_aq, CO**, CO*2, He, MeOH , H%, *o2

Examples of illegal spec names:

H2_g2, H2_, 2H, H!?, CH3(CH2)4CH3, methane, CH3CH2oH, hO2, Ho2o

Examples of legal sites spec names:

*, #, %, &, *a, *b, #eeee, S, Si

Examples of illegal sites spec names:

_a, a, #%, S2, s

The surface bound species’ names are required to include the active surface site they are bound to.

This is necessary for the parser to be able to determine on which of the sites the species is adsorbed

to and how many sites it occupies. For example, one could define a hydrogen atom bound to a

copper catalytic surface site (*) as H*, and then write a hydrogen dissociative adsorption reaction as

H2 + 2* -> 2H*. For multiple-site bound species, an example reaction would be CO2_g + 2* -> COO**

(identical to either COO*2 or CO2*2).

It is recommended to use the conventional molecule naming standards such as C2H5OH rather than

Meth. The reason for this is that the program can then automatically check the stoichiometric

consistency of all of the reactions and compute the reactor elemental mass balances as well. The

standard for determining the elemental content for each of the species is the usual – an element is

considered as any sequence of characters starting with a capital letter and followed by lower-case

letters, such as H, Cu, Ar,… User can then leverage this to use customized parts such as ‘Meth’

above, but should be then careful to avoid reactions such as Meth -> C2H4 + H2O, as ‘Meth’ will be

regarded as any other element, and the above reaction would have bad stoichiometry in the same

12

way as would, for example, Ar -> C2H4 + H2O, while C2H5OH -> C2H4 + H2O would be correct. The

numbers in the species names denote the quantity of appearance of said elements, and therefore,

from the stoichiometric point of view, OHH would contain the same elements as H2O.

It should be noted that CERRES does not support species such as CH3(CH2)4CH3. This functionality

might be added later if needed.

Currently, CERRES does not support any special names often encountered in literature, such as M for

any neutral molecule to be used for example in three body radical recombination reactions. Often in

those cases, each of the neutral molecules is assigned a certain weight of contribution to the

reaction. It was decided this functionality is excluded from CERRES due to the very high increase in

complexity of the parser. However, users can emulate this behaviour by taking advantage of the user

defined rate expression system, which is described further on.

4.2 Reactions

The reactions of a given chemistry set are described by a set of entries which contain information

about the reagents, products, and reaction rate information.

4.2.1 Reagents and products

Each reaction contains a list of reagents and a list of products. The format by which these are input is

a list of species, separated by the ‘+’ sign. The species may be preceded by numerical constants, as is

the case in usual chemical reaction representation.

Examples of reagent/product lists:

H2+2* (identical to H2 + * + *)

CO2 + CH4

OH+H+CH3

H*+H*

H*+CO2_g

CO2

The stoichiometry check will compute the number of each of the elements on both sides of the

reaction equations and compare them, then report any discrepancy. In this way, the user gets

warned if some typos have been made, and may avoid getting erroneous results and wrong mass

balances from the model. Below is a list of example reactions and whether they succeed in the

stoichiometry check:

H2 + 2* -> 2H* (SUCCESS)

CO2 + H2 -> CO + H2O (SUCCESS)

CO2+ H2 -> Co + H2O (FAIL)

CO2 +2H2 -> CO+H2O (FAIL)

H2 + * -> 2H* (FAIL)

13

Also, it should be noted what happens in cases of weird formatting. Any missing species are ignored,

such as in “CO++ + +*”. In addition, any isolated numbers are also ignored, such as in “CO+2*+3”.

Empty reactions assume no reagents/products are involved, and can be used, for example, to

implement species removal terms.

4.2.2 Transfer between phases

Special consideration is given for “reactions” of transferring the species between phases.

For solid-gas and solid-liquid interactions, the adsorption and desorption reactions are written

simply as a reaction between and empty catalytic site and a gas/liquid phases species, resulting in an

adsorbed molecule. In addition, it is possible to use Eley–Rideal type of reactions where the

adsorbed species directly react with gas or liquid phase species. When mass transport limitation

from bulk gas to catalytic surface is enabled, only simple adsorption and desorption reactions are

permitted, as discussed in the reactor section for mass transport limitations.

For transfers between the gas and liquid phase in three phase reactions, the only possibility is direct

transfer by dissolution/evaporation. No reactions must be specified between the liquid and gas

phase. Rather, it is implicitly assumed that the species with the same name but different suffix (for

example, H2_gas and H2_liquid, each being in its own phase) can be transferred between the

phases. The mass transfer coefficients and Henry’s constants provided in operating conditions are

used for the transfer rate – the order is determined by the order of the species in the gas phase. If

there are more than one species with the same suffix in any of the phases, only the first one is

considered.

Example:

Gas species: H2_g, CO2, CO_gas, CH4, H2_ion, O2_ooo

Liquid species: H, H3O, H2_l, O2_oo, O2_oooo, CO_aq, HCOO

Linked species will be: H2_g – H2_l, CO_gas – CO_aq, O2_ooo – O2_oo

4.2.3 Transfer through the membrane (membrane reactors)

The reactor types that include a membrane are “CSTR (membrane)”, “PFR (membrane)”, “PFR

(membrane with diffusion)” and “PFR (membrane - fast)”. When this reactor types are used, some

special requirements have to be fulfilled in the chemistry file:

• Only gas or liquid reaction phase are allowed, not both

• All of the bulk species’ suffixes have to be either “_ret” or “_perm”

• The bulk species have to be sorted, as in, “_ret” come first then “_perm”

• Only “_ret” species can interact with the catalyst

• No reactions are allowed between “_ret” and “_perm” species

• Bulk-bulk reactions between species on the same side (permeate or retentate) are allowed

In the system, “_ret” species are considered to be situated on the retentate side of the membrane,

while “_perm” species are situated on the permeate side. The species with same names and

different suffixes are coupled and can permeate through the membrane. The permeances are

provided in the operating conditions, and are in the same order as the “_ret” coupled species. For

example, if the species list is “H2O_ret, CO_ret, CO2_ret, H2_ret, CH3OH_ret, CHCOOH_ret,

CO2_perm, H2_perm, CO_perm, H2O_perm”, the species “H2O_ret, CO_ret, CO2_ret, H2_ret” will

be coupled with “H2O_perm, CO_perm, CO2_perm, H2_perm”, respectively. The order of

14

permeances in the operating conditions in this case would be “[[Permeance_H2O, Permeance_CO,

Permeance_CO2, Permeance_H2]]”. Note that in this case CH3OH_ret and CHCOOH_ret are only

present on the retentate side and cannot permeate through the membrane.

See the “membrane reactor mass transfer” section in the “Reactors and mass transport

phenomena” chapter for more details on the actual implementation.

4.2.4 Reaction rates

In CERRES, there are three possible default reaction rate modes to choose from, and they are the

same for all of the reaction in a given chemistry set. The constant modes are ‘direct constants’,

‘Arrhenius’ and ‘modified Arrhenius’. In addition, the user may define customized rate expressions

for any desired reactions, which allows for a fine tuning of the kinetics. The user-defined expressions

are covered in the next section.

The automatic reaction rate expression derivation is as following:

𝑅 = 𝑘𝑓𝑜𝑟𝐶𝑟𝑒𝑎𝑔,1
𝑜𝑟𝑑𝑟𝑒𝑎𝑔,1𝐶𝑟𝑒𝑎𝑔,2

𝑜𝑟𝑑𝑟𝑒𝑎𝑔,1 … − 𝑘𝑏𝑎𝑐𝑘𝐶𝑝𝑟𝑜𝑑,1
𝑜𝑟𝑑𝑝𝑟𝑜𝑑,1𝐶𝑝𝑟𝑜𝑑,2

𝑜𝑟𝑑𝑝𝑟𝑜𝑑,2 …

Where kfor and kback are the rate constants of the forward and backward reaction, Creag,i and Cprod,i are

the concentrations of reagent and product i, and ordreag,I and ordprog,i are the orders for each species,

which by default equals the stoichiometric amount of species i in the reaction. For surface species,

the C is in dimensionless coverage, concentrations (mol/L) for the liquid phase species, and either

pressure (Pa) or concentration (mol/L) for gas species, the latter only used in pure gas-gas bulk

reactions (whereas pressure is used for adsorption and Eley-Rideal type reactions).

Examples:

Reaction 1:

H2 + 2Cu <-> 2HCu (where Cu is a catalytic site and H2 is in the gas phase)

Rate 1:

𝑅 = 𝑘𝑓𝑜𝑟𝑝𝐻2𝜃𝐶𝑢
2 − 𝑘𝑏𝑎𝑐𝑘𝜃𝐻𝐶𝑢

2

Reaction 2:

H2+CO2 <-> H2O + CO (all in gas phase)

Rate 2:

𝑅 = 𝑘𝑓𝑜𝑟𝐶𝐻2𝐶𝐶𝑂2 − 𝑘𝑏𝑎𝑐𝑘𝐶𝐻2𝑂𝐶𝐶𝑂

C, p and θ in the equations above are concentration (mol/L), pressure (Pa) and the dimensionless

surface coverage, respectively.

In addition, all of the reactions are considered reversible. If the reversible button is unchecked, the

reverse rate is considered zero at all times. This check only works with automatic rate generation

and not when user-defined expression for the specific reaction is active.

4.2.5 Reaction constant modes

The values of kfor and kback are calculated from the provided user parameters in the following ways:

15

Direct constants: User provides the kfor and kback values directly. Units are s-1 and whichever

combination of (mol/L)-X and/or Pa-X based on the reaction stoichiometry. For gas-catalyst reactions,

the unit is in Pa, for all other cases (gas-gas, liquid-catalyst, liquid-liquid) it’s in mol/L.

Arrhenius: User provides Afor, Ea,for, Aback and Ea,back. A is the pre-exponential factor with units of s-1

and whichever combination of (mol/L)-X and/or Pa-X based on the reaction stoichiometry. Ea is

activation energy with the units of kJ/mol. The reaction rate constants are computed as:

𝑘 = 𝐴𝑒−
𝐸𝑎
𝑅 𝑇

Where T is the temperature in K, R is the gas constant.

Modified Arrhenius: Same as Arrhenius, except that user provides the modified Arrhenius n-factor

as well, and the constants are computed as (where n can be, for example, 1, 2, ½, -1, etc.:

𝑘 = 𝑇𝑛𝐴𝑒−
𝐸𝑎
𝑅 𝑇

4.2.6 User defined rate expressions

User are given much more flexibility by being able to define their own reaction rate expression for

any reaction by adjuring to the CERRES standard of doing so. The rate expression, in this case, is

entirely replaced by the user provided expression.

The following operators are allowed in the rate expression:

* : multiplication

+ : addition

- : subtraction

^ : exponent

NOTE: division is not yet supported due to the difficulty of generation of analytical Jacobian

matrices.

NOTE: for the exponents, only float/integer literals are allowed. One should be careful with both

negative and fractional exponential values to prevent solver convergence failures and unphysical

results. Since we want to allow negative and fractional exponents for concentrations (“reaction

orders”), there are some errors due to numerical imprecision to take into account. If negative

exponents are used (ex. c[x]^-1), division by zero can occur if the base is 0. In that case, the resulting

error is prevented by evaluating to 0. If fractional exponentials (ex. c[x]^0.5) are used, negative

numbers may result in error. In that case, to be sure to prevent crashes, the term is evaluated again

to 0. The following “safe” power function as seen below is used at any time when doing risky

exponents (negative and fractional exponents), so please keep this in mind when using them.

double pows(double b, double e) {

 if (b == 0 && e <= 0) { // check if divide by zero

 return 0;

 } else if (e-(int)e != 0 && b < 0) { // check if fraction and

negative base

 return 0;

 } else {

 return pow(d, e);

 }

}

16

The following expressions can be used as variables:

p/c[spec_name]: concentration, pressure or coverage of any species with spec_name. Pressure can

only be used for gas species.

Examples: p[CH4], c[*], c[H*], c[CO2_aq],c[H2_gas]

T: temperature in Kelvin

k_for and k_back: kinetic constants, computed as defined above

user_var: any user defined variable, as explained above and in the operating conditions section

x: any number in integer, decimal, or floating point form (2, 0.1, 1.23e2) (has to be convertible to

float – as seen below, no +/- signs though)

Additional rules:

Cannot chain exponentials (so c[O2]^2^2 is not allowed). Exponents always have to be a constant

positive int/float number. For example, c[O2]^0.5 is allowed, while c[O2]^voltage is not. This is due

to the usage of same Jacobian matrix orders for all operating conditions. The + and – signs are only

used as operators and not as signs except if – is used right after ^ (but not +), so for example, -

k_back*c[H2]+k_for*c[H]*c[*], k_for*10^-3 and k_for*c[H2]^-0.1 are legal while k_for*-1 and

k_for^+2 are not. The operator precedence is as follows: ^,*, -/+. This means that, for example,

5/2^2 evaluates to 1.25.

Examples:

k_for*c[CH4]*c[CO2] - k_back*c[CO]*voltage^2

k_for*c[CO2]*c[*]^2 – k_back*c[CO2*] - k_for*c[CO2]*c[*]*poisoning_rate*10^-2

k_for*p[H2]*c[*]^1.1 – k_back*c[H*]^0.1 - k_for*c[CO2*]*0.01

4.2.7 User-defined variables

User also have to provide a list of any used user defined variables, to enable easier checking and

reduce user input error. User variables can contain only lowercase and uppercase characters and the

underscore sign (“_”). For the chemistry set to pass the checks, all of the unknown variables in the

user defined expressions have to be found in the user defined variables list, and all of the variables

in the list must be of correct format.

Examples of legal user defined variable names:

Voltage, current, DenSiTY, deact_speed, dampening_factor, reac_order, _, ___, _a, a_

Examples of illegal user defined variable names:

H2, _2, voltage_2, curr*, $, field(a)

4.3 Input chemistry files

The input chemistry file is a .csv (comma separate values) file, containing all the information of a

particular chemistry set. All of the chemistry files are location in the folder

“AppData/Local/cerres/input_files/kinetic_data”. The folder can be directly opened from the GUI in

a system viewer (Explorer). It is recommended to edit the chemistry files with the in-built CERRES

17

chemistry editor, for which no format and implementation knowledge are needed, however, the

format is specified in a way that the user can edit the files in any popular csv editor, such as

Microsoft Excel or LibreOffice Calc, with a low probability of errors occurring. See the “Input files”

section for complete formatting guidelines (and investigate the chemistry files).

4.4 Chemistry editor (GUI)

It is recommended to edit chemistry files in provided Chemistry editor, which can be opened from

the CERRES GUI. In the editor, reactions and species can be added, removed and edited.

Furthermore, the chemistry file can be checked for errors, and the erroneous fields are handily

coloured in the appropriate way to identify the error more easily. This can be seen after loading the

“Example with errors (WGS on Cu)” and running the check. Error checks are also performed during

execution of any input parameters file, and the simulation aborted if any critical errors occur. All of

the checks are mentioned below, and all except stoichiometry are considered critical for the correct

execution of the program.

4.5 Chemistry error checks in CERRES

CERRES performs three basic checks on running a set of input parameters for the chemistry.

4.5.1 Species consistency check

The species consistency check validates the following:

→ All of the species names are unique and of the correct format

→ All of the species contained in the reactions also appear in the list of species

→ There are no reactions between the gas and liquid phase

→ The reactions between the catalytic surface sites and bulk species are only with the liquid

phase in three-phase systems (gas+liquid)

→ All of the surface bound species contain at least one catalytic site

→ If the system contains multiple catalytic sites and they are ‘separated’, no species can be

simultaneously bound to two different catalytic sites

→ If the system contains multiple catalytic sites and they are ‘separated’, no reaction can occur

between species bound on different catalytic sites

If any of these checks fails, the chemistry is invalid, and the program cannot proceed. An error is

raised and an error message is printed.

4.5.2 Stoichiometry check

The stoichiometry check performs an evaluation of element balance for all reactions. If the check

fails, the user is warned (and the violating reactions identified and displayed), but the program will

still run. This is to ensure that non-physical disappearance of elements doesn’t occur by

unintentional errors, but users can still make species disappearance or generation terms for their

system if they are needed.

The stoichiometry check computes the quantity of each element on both product and reagent side

of each reaction. If the elemental quantities aren’t equal for each of the elements, the checker

reports the reaction as inconsistent.

18

4.5.3 User defined rate check

Checks whether the above requirements for user defined rate generation are compliant. Also checks

whether all of the user variables used in the user defined rates are also defined in the user defined

variables list (which is also checked for correct format). Additionally, the check is later performed

when running the program and input data is known, if all the custom user defined variables needed

are present in the inputs.

19

5 Models, reactors, equations and transport phenomena
This section covers the implementation of the models for different reactor types and mass transfer

phenomena.

5.1 General about the models

The models in CERRES are always isothermal (constant temperature in time and space), and constant

pressure is assumed in all points of the reactor (no pressure drops are computed by for example the

Ergun equation). For the pressure, it can change in time with the changing concentrations. While this

makes sense for example for batch type reactions, one should be careful when modelling continuous

flow reactors such as CSTR. In CSTR, if “Velocity change” (see below) input is disabled, the inlet

flowrate is assumed to be the same as outlet flow rate, which may lead to higher concentration than

expected in the reactor when the gas expands during reaction (for example, H2->2H). In this case,

the pressure in the reactor will be higher than the inlet pressure, although this may be unphysical.

By using “Velocity change”, the total concentration in such cases will always equal to the inlet total

concentration, and the outlet flow rate will be changed accordingly.

5.2 Initial conditions

In most cases, the initial conditions in the reactor are that the bulk concentrations are equal to the

inlet concentrations, and the catalytic surface is empty. These can be changed for some reactor

types in the Reactor setup tab.

5.3 Species reaction mass balance terms

The reaction rate definition is already covered in the Chemistry section. The mass balances for the

species depend on the species phase. For the surface adsorbed species, the mass balance is always

just the sum of the reaction rates, multiplied by the stoichiometry coefficients, as shown in the

equation below:

𝑑𝜃𝑖

𝑑𝑡
= 𝑅𝑖,𝑐𝑎𝑡 = ∑(−𝑆𝑖,𝑛,𝑓 + 𝑆𝑖,𝑛,𝑏)𝑟𝑛

𝑁

𝑛=1

Ri,cat is the reaction term of the mass balance (which equals to the total mass balance for surface

species) through catalytic surface reactions. Si,n,f and Si,n,b are the forward and backward

stoichiometry factors, e. g. how many times the species occurs in the reactions reagents or products,

and rn is the reaction rate. N is the number of reactions. The bulk species mass balances contain also

the mass transport terms.

𝑑𝐶𝑖

𝑑𝑡
= 𝑀𝑖 + 𝐶∗

1 − 𝜀

𝜀
𝑅𝑖,𝑐𝑎𝑡 + 𝑅𝑖,𝑏𝑢𝑙𝑘

Mi is the mass transport term which depends on the specific reactor type and Ri,bulk is the reaction

term for bulk-bulk type reaction. Ri,cat in this case is multiplied by the expression where C* is the

concentrations of active sites per volume of the catalyst and ε is the void fraction, which links the

changes in surface coverage to changes in bulk species concentration.

The mass balances for the reactor-specific mass transport phenomena are covered below. They only

apply for the bulk (gas or liquid) species.

20

5.4 Reactor types and transport phenomena

5.4.1 Batch reactor

The simplest reactor type with no inlets or outlets. The mass balances are equal to the mass

balances from reactions only, as defined above.

5.4.2 Continuous stirred-tank reactor (CSTR)

𝑑𝐶𝑖

𝑑𝑡
=

𝐹𝑖𝑛

𝑉𝜀
𝐶𝑖,𝑖𝑛𝑙𝑒𝑡 + 𝐶∗

1 − 𝜀

𝜀
𝑅𝑖,𝑐𝑎𝑡 + 𝑅𝑖,𝑏𝑢𝑙𝑘 −

𝐹𝑜𝑢𝑡

𝑉𝜀
𝐶𝑖

Simple one-point reactor with one inlet and one outlet. It is assumed that the reactor is ideally

mixed, and concentration anywhere in the reactor equals Ci. V is the reactor volume, and Fin and Fout

are the inlet and outlet gas/liquid flow rates. If the “Velocity change” parameter is disabled, they are

equal, with it enabled, Fout is implicitly defined as such that the time derivative of the total

concentration at all times is 0 for the gas phase.

21

5.4.3 Fixed bulk concentration reactor

In this reactor type, only the surface species’ time evolution is simulated, while the bulk

concentrations are kept constant. Similarities can be drawn with usually implementations of kinetic

Monte-Carlo approaches.

5.4.4 Batch (three-phase)

Same as the normal batch reactor, but allowing for three phase (gas+liquid+catalyst) chemistry.

5.4.5 CSTR (three-phase)

Same as the normal batch reactor, but allowing for three phase (gas+liquid+catalyst) chemistry. The

inlet and outlet, in this case, are for the gas phase only.

22

5.4.6 CSTR (membrane)

Same as normal CSTR, but with a membrane separating the reactor into two compartments.

Gas/liquid flows through each of them, each being at a different set pressure. Catalyst only on

retentate side, while only bulk reactions possible on the (empty, void fraction = 1) permeate side.

Different gas species can permeate through the membrane with a rate based on the values of their

permeances. See the “membrane reactor mass transfer” section in this chapter for more details on

the implementation.

5.4.7 Plug flow reactor (PFR)

𝜕𝐶𝑖

𝜕𝑡
= −𝑣𝑥

𝜕𝐶𝑖

𝜕𝑥
+ 𝐶∗

1 − 𝜀

𝜀
𝑅𝑖,𝑐𝑎𝑡 + 𝑅𝑖,𝑏𝑢𝑙𝑘

A simple form of one-dimensional pipe reactor (catalytic packed bed). vx is the gas velocity in the

axial direction. For solving, the above equation is discretized to apply for a finite number of volumes

(the number of which is set in the Reactor setup tab), forming a system of ordinary differential

equations (ODEs). The velocity is assumed the same at any reactor point, and thus no radial changes

in concentrations are observed, only axial ones. Velocity change can be applied here, as in the case

of CSTR, in which case vx is position dependent.

23

5.4.8 PFR (with diffusion)

𝜕𝐶𝑖

𝜕𝑡
= −𝑣𝑥

𝜕𝐶𝑖

𝜕𝑥
+

𝐷𝑖

𝜏

𝜕2𝐶𝑖

𝜕𝑥2
+ 𝐶∗

1 − 𝜀

𝜀
𝑅𝑖,𝑐𝑎𝑡 + 𝑅𝑖,𝑏𝑢𝑙𝑘

Exactly the same as above, but including also the diffusive/dispersive mass transport. D is the

diffusion coefficient, which can be set in the Operating conditions tab. τ is the tortuosity factor due

to a non-straight diffusion path through the catalytic bed.

5.4.9 PFR (fast)

Same as normal PFR, with the difference that it is simulated literally by performing serial CSTR

simulations for each reactor point. As such, it is best used only for the case where we are interested

solely in the steady-state operation. It is generally faster than normal PFR simulation.

5.4.10 PFR (membrane)

Same as PFR but with a membrane, implemented in a similar fashion as for CSTR (membrane).

Please see the “membrane reactor mass transfer” section of this chapter for more details.

24

5.4.11 PFR (membrane with diffusion)

Same as PFR (membrane) but with additional axial dispersion/diffusion. The dispersion is taken into

account on both sides of the membrane.

5.4.12 PFR (membrane - fast)

Same as PFR – membrane but implement as “fast” (see PFR – fast). This is especially useful for

membrane systems where usually the “velocity change” input is required and analytical Jacobian

generation with it enabled is no possible for normal PFR but is possible for PFR – fast. Please see the

“membrane reactor mass transfer” section of this chapter for more details.

5.4.13 Parallel plates channel (2D)

𝑏𝑢𝑙𝑘:
𝜕𝐶𝑖

𝜕𝑡
= −𝑣𝑥(𝑦)

𝜕𝐶𝑖

𝜕𝑥
+ 𝐷𝑖

𝜕2𝐶𝑖

𝜕𝑥2
+ 𝐷𝑖

𝜕2𝐶𝑖

𝜕𝑦2
+ 𝑅𝑖,𝑏𝑢𝑙𝑘

𝑣𝑜𝑙𝑢𝑚𝑒𝑠 𝑛𝑒𝑥𝑡 𝑡𝑜 𝑤𝑎𝑙𝑙𝑠:
𝜕𝐶𝑖

𝜕𝑡
= −𝑣𝑥(𝑦)

𝜕𝐶𝑖

𝜕𝑥
+ 𝐷𝑖

𝜕2𝐶𝑖

𝜕𝑥2
+ 𝐷𝑖

𝜕2𝐶𝑖

𝜕𝑦2
+ 𝐶∗

1 − 𝜀

𝜀
𝑅𝑖,𝑐𝑎𝑡 + 𝑅𝑖,𝑏𝑢𝑙𝑘

A slightly more complex reactor type, which is simulated in two dimensions, X (direction of flow) and

Y (direction normal to the plates). The mass transport by the flow rate (convection) is in the X

direction, while diffusion/dispersion can occur in either X, Y or both directions. The velocity

25

distribution between the plates is of convective shape, as is typical for laminar flow. In this reactor

type, the catalytic reaction is only possible on the walls (one or both), while only bulk-bulk

reactions can occur between the plates. The velocity profile is computed as (where rel denotes the

relative values, and S is the cross section of each finite volume and y is the position in the reactor):

𝑣𝑥,𝑟𝑒𝑙 = 1 − (2𝑦𝑟𝑒𝑙 − 1)2

𝑣𝑥 = 𝐾𝑣𝑥,𝑟𝑒𝑙

𝐾 =
𝐹𝑡𝑜𝑡

𝑆
𝑛𝑦

∑ 𝑣𝑥,𝑟𝑒𝑙

5.4.14 Round channel (2D)

Same as the parallel plates reactor, with the difference that the roundness is taken into account for

the following aspects:

- Diffusion in radial (Y) direction considers the radial contribution

- Catalyst sites are distributed so that the outward (bigger) surface has more of them relative

to the surface increase. In that regard, infinitely small layers of bulk gas/liquid by the surface

should receive the same change in bulk due to reaction, but due to limited size of finite

volumes the radial factor is taken into account.

- The gradually increasing finite volumes are taken into account for convective mass transport

- The velocity profile is different than a perfect concave due to the roundness (the maximum

velocity is shifted towards the centre) – equation below

𝑣𝑥,𝑟𝑒𝑙 =
𝑙𝑛 (

𝑟
𝑅𝐼

)

𝑙𝑛 (
𝑅𝑂
𝑅𝐼

)
(𝑅𝑂

2 − 𝑅𝐼
2) − (𝑟2 − 𝑅𝐼

2)

26

5.5 Mass transport limitations and other phenomena

Normally, no mas transfer limitations are assumed, e. g. the concentration at the catalyst surface is

the same as bulk concentration. Additional limitations and enhancements to the mass transfer rates

can be incurred through the settings in the Reactor setup tab. They are described in this subchapter.

5.5.1 Mass transfer limitation from the bulk to the catalytic surface

When this is enabled, only simple adsorption/desorption reactions are permitted due to complexity

issues of multiple Eley-Rideal type reactions. The requirements are thus that for each gas species,

maximum one reaction with catalyst is permitted, and it needs to be of the form:

A + * <-> A*

Where A is the gas species in question. As such, we can derive a simple mass balances for such bulk

species as follows (and as seen above):

𝑑𝐶

𝑑𝑡
= 𝑅𝑏𝑢𝑙𝑘 + 𝑅𝑐𝑎𝑡 + 𝑀

The general mass balance above describes the time derivative of concentration C of a gas species,

and Rbulk, Rcat and M are bulk-bulk reaction, bulk-catalyst reaction and mass transport terms,

respectively. For the mass transfer limitations of bulk to surface type, we are only interested in

changing the Rcat term. Considering instant equilibrium, the molar flow rate to the surface via mass

transfer must be equal to the surface reaction rate, leading to the following equation:

𝑅𝑐𝑎𝑡 = −𝑓𝑠𝑖𝑡𝑒𝑟𝑎𝑡𝑒𝑓+𝑏 = −𝑓𝑠𝑖𝑡𝑒𝑘𝑓𝑜𝑟𝐶𝑠𝑓𝑝𝜃∗ + 𝑓𝑠𝑖𝑡𝑒𝑘𝑏𝑎𝑐𝑘𝜃𝑎𝑑𝑠

𝑅𝑐𝑎𝑡 = −
𝐴𝑐𝑎𝑡𝑉𝑐𝑎𝑡𝑘𝑀𝑇

𝑉𝑣𝑜𝑖𝑑

(𝐶 − 𝐶𝑠)

Cs is concentration of the species just by the surface of the catalyst, Acat is the surface of the

stationary film around the catalyst per catalyst volume, kMT is the mass transfer coefficient and fsite is

the C*(1-ε)/ε term described above.

−
𝐴𝑐𝑎𝑡𝑉𝑐𝑎𝑡𝑘𝑀𝑇

𝑉𝑣𝑜𝑖𝑑

(𝐶 − 𝐶𝑠) = −𝑓𝑠𝑖𝑡𝑒𝑘𝑓𝑜𝑟𝐶𝑠𝑓𝑝𝜃∗ + 𝑓𝑠𝑖𝑡𝑒𝑘𝑏𝑎𝑐𝑘𝜃𝑎𝑑𝑠

𝐴𝑐𝑎𝑡𝑉𝑐𝑎𝑡𝑘𝑀𝑇

𝑉𝑣𝑜𝑖𝑑
= 𝐸 ; 𝑓𝑠𝑖𝑡𝑒𝑘𝑓𝑜𝑟𝑓𝑝 = 𝐹 ; 𝑓𝑠𝑖𝑡𝑒𝑘𝑏𝑎𝑐𝑘 = 𝐺

−𝐸(𝐶 − 𝐶𝑠) = −𝐹𝐶𝑠𝜃∗ + 𝐺𝜃𝑎𝑑𝑠

−𝐸𝐶 + 𝐶𝑠(𝐹𝜃∗ + 𝐸) − 𝐺𝜃𝑎𝑑𝑠 = 0

𝐶𝑠 =
𝐺𝜃𝑎𝑑𝑠 + 𝐸𝐶

𝐹𝜃∗ + 𝐸

Therefore, we can write the final rate of the adsorption/desorption reaction as:

𝑟𝑎𝑡𝑒𝑓+𝑏 = 𝑘𝑓𝑜𝑟𝑓𝑝𝜃∗

𝐺𝜃𝑎𝑑𝑠 + 𝐸𝐶

𝐹𝜃∗ + 𝐸
− 𝑘𝑏𝑎𝑐𝑘𝜃𝑎𝑑𝑠

𝑟𝑎𝑡𝑒𝑓+𝑏 = 𝑘𝑓𝑜𝑟𝑓𝑝𝜃∗

𝑓𝑠𝑖𝑡𝑒𝑘𝑏𝑎𝑐𝑘𝜃𝑎𝑑𝑠 + 𝐸𝐶

𝑓𝑠𝑖𝑡𝑒𝑘𝑓𝑜𝑟𝑓𝑝𝜃∗ + 𝐸
− 𝑘𝑏𝑎𝑐𝑘𝜃𝑎𝑑𝑠

27

When catalyst on walls option is used, the Vcat used to calculate area from Acat is taken as reactor

volume instead (instead of being ambiguously calculated from reactor dimensions).

𝐸 =
𝐴𝑐𝑎𝑡𝑉𝑐𝑎𝑡𝑘𝑀𝑇

𝑉𝑣𝑜𝑖𝑑
=

𝐴𝑐𝑎𝑡𝑉𝑅(1 − 𝜀)𝑘𝑀𝑇

𝑉𝑅𝜀
=

(1 − 𝜀)

𝜀
𝐴𝑐𝑎𝑡𝑘𝑀𝑇 ; 𝐸 = 𝐴𝑐𝑎𝑡𝑘𝑀𝑇

5.5.2 Internal mass transfer limitations

This phenomenon deals with the limitation of mass transfer into the catalytic particle, which can

limit the conversions in case of fast reactions and relatively large particles. This is solved by a simple

“Effectiveness factor” approach, which basically reduces the rates of bulk-catalytic reactions and is

implementation-wise the same as reducing the parameter for the total available catalytic sites.

5.5.3 Velocity change

The following equations who how the model maintains constant pressure by implicitly assuming the

velocity out of the reactor is such that the total concentration of gas species doesn’t change, where

Ri is the combined Ri,cat and Ri,bulk. vfactor is basically equal to L/vx or V/V’x where L, V and V’x are the

finite element length, volume and volumetric flow rate, respectively.

𝑑𝑐𝑖

𝑑𝑡
= 𝑅𝑖 + 𝑣𝑓𝑎𝑐𝑡𝑜𝑟,𝑖𝑛𝑙𝑒𝑡𝐶𝑖,𝑖𝑛𝑙𝑒𝑡 − 𝑣𝑓𝑎𝑐𝑡𝑜𝑟𝑐𝑖

𝑣𝑓𝑎𝑐𝑡𝑜𝑟 =
∑ 𝑅𝑗 + 𝑣𝑓𝑎𝑐𝑡𝑜𝑟,𝑖𝑛𝑙𝑒𝑡𝐶𝑗,𝑖𝑛𝑙𝑒𝑡

𝑛
𝑗=1

∑ 𝑐𝑗
𝑛
𝑗=1

𝑣𝑓𝑎𝑐𝑡𝑜𝑟 =
∑ 𝑅𝑗 + 𝑣𝑓𝑎𝑐𝑡𝑜𝑟,𝑖𝑛𝑙𝑒𝑡𝐶𝑗,𝑖𝑛𝑙𝑒𝑡

𝑛
𝑗=1

∑ 𝐶𝑗,𝑖𝑛𝑙𝑒𝑡
𝑛
𝑗=1

=
∑ 𝑅𝑗 + 𝑣𝑓𝑎𝑐𝑡𝑜𝑟,𝑖𝑛𝑙𝑒𝑡𝐶𝑗,𝑖𝑛𝑙𝑒𝑡

𝑛
𝑗=1

𝐶𝑡𝑜𝑡𝑎𝑙,𝑖𝑛𝑙𝑒𝑡

𝑑𝑐𝑖

𝑑𝑡
= 𝑅𝑖 + 𝑣𝑓𝑎𝑐𝑡𝑜𝑟,𝑖𝑛𝑙𝑒𝑡𝐶𝑖,𝑖𝑛𝑙𝑒𝑡 − 𝑐𝑖

∑ 𝑅𝑗 + 𝑣𝑓𝑎𝑐𝑡𝑜𝑟,𝑖𝑛𝑙𝑒𝑡𝐶𝑗,𝑖𝑛𝑙𝑒𝑡
𝑛
𝑗=1

𝐶𝑡𝑜𝑡𝑎𝑙,𝑖𝑛𝑙𝑒𝑡

The assumption that the sum of all concentrations equals to the sum of inlet concentrations holds

true for the model and the system of equations. The simplified equation with constant denominator

term Ctotal,inlet has an easy way to generate the analytical Jacobian of the system, and enables highly

stable and efficient computing. The “Velocity change” parameter can highly increase the system’s

stiffness due to the coupling of all of the bulk species. Therefore, for systems with equimolar

reactions or low conversions, consider disabling this option for faster computing. The comparison

between the total concentration and expected total concentration, as well as inlet and outlet

velocities can be plotted with the “Outlet” plot.

5.5.4 Three phase reactors mass transfer

The direction is considered from gas to liquid point of view, regarding the +/- signs.

Symbols and units:

He – Henry’s constant [mol/(L bar)]

C – concentration [mol/L]

p – pressure [bar]

28

V – volume [L]

�̇� – molar flow [mol/s]

t – time [s]

GLR – gas to liquid ratio [/]

A – interphase surface area [m2]

kLTI – mass transfer coefficient on the liquid side (bulk to interface) [m/s]

kGTI – mass transfer coefficient on the gas side (bulk to interface) [m/s]

R – gas constant [L bar/(mol K)]

T – temperature [K]

i – interface

b – bulk

General equations:

𝐻𝑒 =
𝐶𝑙𝑖𝑞𝑢𝑖𝑑,𝑖

𝑝𝑔𝑎𝑠,𝑖

𝑑𝐶𝑙𝑖𝑞𝑢𝑖𝑑,𝑏

𝑑𝑡
=

�̇�

𝑉𝑙𝑖𝑞𝑢𝑖𝑑
 ;

𝑑𝐶𝑔𝑎𝑠,𝑏

𝑑𝑡
= −

�̇�

𝑉𝑔𝑎𝑠

𝑉𝑙𝑖𝑞𝑢𝑖𝑑 =
𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝜀

1 + 𝐺𝐿𝑅
 ; 𝑉𝑔𝑎𝑠 =

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝜀

1 +
1

𝐺𝐿𝑅

Gas to interface MT limitation

In this case, perfect mixing is assumed in the liquid phase.

�̇� = 𝐴 𝑘𝐺𝑇𝐼(𝐶𝑔𝑎𝑠,𝑏 − 𝐶𝑔𝑎𝑠,𝑖) = 𝐴 𝑘𝐺𝑇𝐼 (𝐶𝑔𝑎𝑠,𝑏 −
1

𝐻𝑒 𝑅 𝑇
𝐶𝑙𝑖𝑞𝑢𝑖𝑑,𝑏)

Liquid to interface MT limitation

In this case, perfect mixing is assumed in the gas phase.

�̇� = 𝐴 𝑘𝐿𝑇𝐼(𝐶𝑙𝑖𝑞𝑢𝑖𝑑,𝑖 − 𝐶𝑙𝑖𝑞𝑢𝑖𝑑,𝑏) = 𝐴 𝑘𝐿𝑇𝐼(𝐻𝑒 𝑅 𝑇 𝐶𝑔𝑎𝑠,𝑏 − 𝐶𝑙𝑖𝑞𝑢𝑖𝑑,𝑏)

Both MT limitations

In this case, neither gas or liquid phase have perfect mixing.

�̇� = 𝐴 𝑘𝐺𝑇𝐼(𝐶𝑔𝑎𝑠,𝑏 − 𝐶𝑔𝑎𝑠,𝑖)

�̇� = −𝐴 𝑘𝐿𝑇𝐼(𝐶𝑙𝑖𝑞𝑢𝑖𝑑,𝑏 − 𝐶𝑙𝑖𝑞𝑢𝑖𝑑,𝑖) = −𝐴 𝑘𝐿𝑇𝐼(𝐶𝑙𝑖𝑞𝑢𝑖𝑑,𝑏 − 𝐻𝑒 𝑅 𝑇 𝐶𝑔𝑎𝑠,𝑖)

29

�̇� = 𝐴 𝑘𝐺𝑇𝐼 (𝐶𝑔𝑎𝑠,𝑏

𝐻𝑒 𝑅 𝑇

𝐻𝑒 𝑅 𝑇 +
𝑘𝐺𝑇𝐼
𝑘𝐿𝑇𝐼

− 𝐶𝑙𝑖𝑞𝑢𝑖𝑑,𝑏

1

𝐻𝑒 𝑅 𝑇 +
𝑘𝐺𝑇𝐼
𝑘𝐿𝑇𝐼

)

No MT limitation

This variant is currently unsupported (instant equilibrium between the phases) due to

implementation restrictions. Might be added later given enough requests. We suggest using a single

MT limitation variant with high values in the meantime, or some other approach to reduce the

unneeded coupling between different species.

5.5.5 Membrane reactor mass transfer

Generally, the membrane systems are comprised of two volumes, retentate and permeate sides,

separated by a membrane. Both of the sides are treated as separate systems with their own

pressure, flow rate as well as inlet and outlet gas concentrations. The systems are coupled only

through mass transfer over the membrane, which is limited to a certain number of species (see

chemistry section on membrane reactors). The mass transfer rate through the membrane for the

coupled species is:

�̇�𝑚𝑒𝑚𝑏. = 𝐴𝑚𝑒𝑚𝑏.𝑃𝑖(𝑝𝑖,𝑟𝑒𝑡 − 𝑝𝑖,𝑝𝑒𝑟𝑚) = 𝐴𝑚𝑒𝑚𝑏.𝑃𝑖𝑅𝑇(𝑐𝑖,𝑟𝑒𝑡 − 𝑐𝑖,𝑝𝑒𝑟𝑚)

where Nmemb. is the molar flow through the membrane in mol/s, Amemb. is the membrane surface area

in m2 and Pi is the permeance of species i in mol/(m2 Pa s) (units for the input file are mol/(m2 Pa h)).

In the case of liquid phase, concentration is used directly instead of pressure (in that case, input

permeance is in units m/h)).

It is assumed for the CSTR type of the membrane reactor that both of the compartments are

individually perfectly mixed, while for PFR types, each finite volume is perfectly mixed in its

respective compartment. No model currently covers membrane transport in two dimensions (as in

radial inhomogeneity) – partially due to much more complex flow profiles. The mass balances for

bulk species for the CSTR reactor are shown below (while for PFR, a serial implementation can be

conceptually assumed):

𝑅𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠:
𝑑𝐶𝑖

𝑑𝑡
=

𝐹𝑟𝑒𝑡,𝑖𝑛

𝑉𝑟𝑒𝑡𝜀
𝐶𝑖,𝑖𝑛𝑙𝑒𝑡 + 𝐶∗

1 − 𝜀

𝜀
𝑅𝑖,𝑐𝑎𝑡 + 𝑅𝑖,𝑏𝑢𝑙𝑘 −

𝐹𝑟𝑒𝑡,𝑜𝑢𝑡

𝑉𝑟𝑒𝑡𝜀
𝐶𝑖 −

�̇�𝑚𝑒𝑚𝑏.

𝑉𝑟𝑒𝑡𝜀

𝑃𝑒𝑟𝑚𝑒𝑎𝑡𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠:
𝑑𝐶𝑖

𝑑𝑡
=

𝐹𝑝𝑒𝑟𝑚,𝑖𝑛

𝑉𝑝𝑒𝑟𝑚
𝐶𝑖,𝑖𝑛𝑙𝑒𝑡 + 𝑅𝑖,𝑏𝑢𝑙𝑘 −

𝐹𝑝𝑒𝑟𝑚,𝑜𝑢𝑡

𝑉𝑝𝑒𝑟𝑚
𝐶𝑖 +

�̇�𝑚𝑒𝑚𝑏.

𝑉𝑝𝑒𝑟𝑚

The volumes for each side are computed from the input provided RPR (retentate/permeate volume

ratio) as such:

𝑉𝑟𝑒𝑡 = 𝑅𝑃𝑅 𝑉𝑝𝑒𝑟𝑚 =
𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟

(1 +
1

𝑅𝑃𝑅)

The void fraction in this case only applies to retentate side, as it is assumed the catalyst is only

present there while the permeate side has a void fraction of 1. Furthermore, it is assumed that the

available membrane surface area is not affected by the void fraction, that is, regardless of the void

30

fraction; the input membrane surface area is taken with its unchanged value. If users wish to

simulate coverage of the membrane surface with catalytic particles, it is suggested to just reduce the

membrane surface area parameter accordingly. For the inlet gas concentration, the same operating

conditions parameter is used, but the array is divided based on the membrane side and normalized

separately. The liquid inlet concentrations are taken as they are.

Due to the nature of the membrane transport, it is highly recommended to select the “Velocity

change” parameter. This will assure that the pressure always stays at its set value for both sides of

the membrane, and only the gas flow rate changes. Otherwise, constant outlet flow rate is assumed,

which will in most cases lead to unexpected pressures. The implementation of velocity change is the

same as for reactor types – outlet flow rate is assumed such that the sum of the bulk species’

concentration time derivative is 0 (separately for each side of the membrane).

31

6 Used libraries and programs
CERRES uses a variety of different open-source libraries. We are highly thankful to the developers of

these projects. The libraries are listed below, and their licenses are included in Appendix 1.

Python (https://www.python.org/)

Sundials (https://computing.llnl.gov/projects/sundials)

NumPy (https://numpy.org/)

SciPy (https://www.scipy.org/)

Matplotlib (https://matplotlib.org/)

OpenMP (https://www.openmp.org/)

https://www.python.org/
https://computing.llnl.gov/projects/sundials
https://numpy.org/
https://www.scipy.org/
https://matplotlib.org/
https://www.openmp.org/

32

PyInstaller (https://www.pyinstaller.org/index.html)

Inno Setup (https://jrsoftware.org/isinfo.php)

In addition, CERRES relies on the GNU GCC compiler (https://gcc.gnu.org/) as an external program

for dynamically-generated code compilation. The compiler is included in the MinGW-w64

distribution (http://mingw-w64.org/doku.php), which is bundled in the CERRES installer and installed

automatically under the “<CERRES installation folder>/cvode_execution/mingw_libs/mingw” path.

CERRES invokes this program via command-line arguments, and as such the GNU GCC compiler is not

a part of CERRES but a separate program, having its own GNU GNU GPLv3+ license, as displayed

below. Due to the license requirements, we provide the MinGW-w64 source code in the public

CERRES repository (https://github.com/DamjanLasicJurkovic/CERRES_public) via a zipped file

(“mingw-w64-v7.0.0.zip“). Users that already have a GCC compiler installed on their system, can

likely remove this folder from the CERRES installation folder to save space, the requirements being

that the GCC targets w64 architecture and is on the system PATH. Note that this has not been

thoroughly tested, so it is advised to back-up the bundled files, run the CERRES test from the GUI,

and finally delete them only after confirming that everything works correctly.

Only to be used for automatic file generation or such tasks, most users should be better off using the

UI editors. Before writing any scripts for file generation, we encourage the users to first open and

check the format of the example files.

https://www.pyinstaller.org/index.html
https://jrsoftware.org/isinfo.php
https://gcc.gnu.org/
http://mingw-w64.org/doku.php
https://github.com/DamjanLasicJurkovic/CERRES_public

33

7 Input files format (advanced)

7.1 File format, parsing and sections

All of the CERRES files are comprised of sections. Each section is a part of text surrounded by token

lines. The section begins on the first line after the token line, and contains all lines up to the section

end line. The section start line begins with $_token_$, where _token_ represents any of the token

words, as described below. The section end line begins with end.

The files are parsed in the following way. The file is first split into lines, then all token lines are

identified. All sections are extracted, and the rest of the file is ignored. The sections are then parsed

appropriately based on the section name and content. Any extra sections that are not used by the

file format, for example $reactions$ in input parameters file, are ignored. Any missing sections result

in an error.

7.2 List of the used section tokens

7.2.1 General

These are the tokens used by all input file types, but they can be omitted if not needed.

• $title$ - title of the file (limited to one line)

• $author$ - author of the file (limited to one line)

• $description$ - description of the file

• $references$ - any important literature references connected to the file

• $version$ - CERRES version, for back-compatibility implementation in cases of changing

formats

7.2.2 Input parameters files

• $parameter_list$ - list of input parameters

o In form of lines of “parameter_family.parameter_name = parameter_value”

o EXAMPLE: operating_conditions.temperature_list_C = [100,200,300]

o Can have comments on lines starting with # within the section

7.2.3 Chemistry files

• $species_gas$ - list of gas bulk species

• $species_liquid$ - list of liquid bulk species

• $species_adsorbed$ - list of species adsorbed on the surface of the catalyst

• $species_sites$ - list of catalytic sites

• $reactions$ - the list of reactions, constants, and potential user-defined rate expressions

• $user_variables$ - the list of any additional variables used in the user-defined rate

expressions. This is used as an extra check to avoid user errors.

• k_mode - mode of kinetic constants (direct k, Arrhenius, modified Arrhenius)

• $sites_mode$ - separated or mixed

7.2.4 Experimental data files

• nr_exp - number of experiments, used for consistency check

34

• exp_data_type - type of data, either “steady_state” or “transient”

• $measured_species$ - list of all the species which were measured, used for consistency

check

• $defined_parameters$ - which parameters are to be used from exp data file instead of the

inputs, used for consistency check

o Can only be the ones from “operating_conditions” list in inputs

o Have to use internal names as in “all_parameter_file.csv” file (see below), for

example, “temperature_list_C”

• $conditions$ - the operating conditions for each of the experiments is listed here

o Nr_exp+1 rows, first is header

o Nr_defined_parameters columns

o Have to be the same as described above

o Always ordered from exp 1 to exp N, even though diff order for example in transient

data

o Need to have the same format as inputs with one less nested array

o (the inlet concentrations are therefore defined here)

o (The simulation time can be adjusted here for each exp if transient and diff time

scales)

• $measurements$ - the measured concentrations are listed here

o Different whether transient or steady state

o Units: partial concentrations for gas (dimensionless, won’t be normalized), mol/L for

liquid, surface fraction for adsorbed/sites (dimensionless)

o Steady state

▪ Nr_exp+1 rows, first is header

▪ Nr_measured_species columns

▪ Concentrations as inputs with one less nested array level

o Transient

▪ Multiple subsections, starting line with exp_# (exp_1, exp_33)

▪ Nr_t+1 rows, first is header

▪ Can have different numbers of measurements and time scales for each

experiment

▪ Experiment numbers have to be from 1 to N, will be sorted on input

▪ Nr_measured_species +1 columns, first is time

▪ Time is in seconds!!!

7.3 Complete list of CERRES inputs

The complete list of CERRES inputs (if needed for programmed file generation purposes) can be

found in the CERRES installation folder, under

“input_files/par_descriptor_files/all_parameter_file.csv”. Note that this file is used by CERRES for

various checks and GUI generation, so note that editing this file will most likely break installation.

35

8 References/literature
[1] E. Jones, E. Oliphant, P. Peterson, SciPy: Open Source Scientific Tools for Python, (2001).

http://www.scipy.org/ (accessed January 1, 2019).

[2] S.D. Cohen, A.C. Hindmarsh, CVODE, a stiff/nonstiff ODE solver in C, Comput. Phys. 10 (1996)
138–143. doi:10.1063/1.4822377.

[3] A.C. Hindmarsh, P. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C. Woodward,
SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, ACM Trans. Math.
Softw. 31 (2005) 363–396. doi:10.1145/1089014.1089020.

[4] J.D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9 (2007) 99–104.
doi:10.1109/MCSE.2007.55.

36

9 Appendix 1: Licenses of the used libraries

CERRES uses a variety of different open-source libraries. We are highly thankful to the developers of

these projects. The libraries are listed below, and their licenses are included in Appendix 1.

Python (https://www.python.org/)

License:

“

A. HISTORY OF THE SOFTWARE

==========================

Python was created in the early 1990s by Guido van Rossum at Stichting

Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands

as a successor of a language called ABC. Guido remains Python's

principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for

National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)

in Reston, Virginia where he released several versions of the

software.

In May 2000, Guido and the Python core development team moved to

BeOpen.com to form the BeOpen PythonLabs team. In October of the same

year, the PythonLabs team moved to Digital Creations, which became

Zope Corporation. In 2001, the Python Software Foundation (PSF, see

https://www.python.org/psf/) was formed, a non-profit organization

created specifically to own Python-related Intellectual Property.

Zope Corporation was a sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org for

the Open Source Definition). Historically, most, but not all, Python

releases have also been GPL-compatible; the table below summarizes

the various releases.

 Release Derived Year Owner GPL-

 from compatible? (1)

https://www.python.org/

37

 0.9.0 thru 1.2 1991-1995 CWI yes

 1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

 1.6 1.5.2 2000 CNRI no

 2.0 1.6 2000 BeOpen.com no

 1.6.1 1.6 2001 CNRI yes (2)

 2.1 2.0+1.6.1 2001 PSF no

 2.0.1 2.0+1.6.1 2001 PSF yes

 2.1.1 2.1+2.0.1 2001 PSF yes

 2.1.2 2.1.1 2002 PSF yes

 2.1.3 2.1.2 2002 PSF yes

 2.2 and above 2.1.1 2001-now PSF yes

Footnotes:

(1) GPL-compatible doesn't mean that we're distributing Python under

 the GPL. All Python licenses, unlike the GPL, let you distribute

 a modified version without making your changes open source. The

 GPL-compatible licenses make it possible to combine Python with

 other software that is released under the GPL; the others don't.

(2) According to Richard Stallman, 1.6.1 is not GPL-compatible,

 because its license has a choice of law clause. According to

 CNRI, however, Stallman's lawyer has told CNRI's lawyer that 1.6.1

 is "not incompatible" with the GPL.

Thanks to the many outside volunteers who have worked under Guido's

direction to make these releases possible.

B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON

===

PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

--

1. This LICENSE AGREEMENT is between the Python Software Foundation

("PSF"), and the Individual or Organization ("Licensee") accessing and

otherwise using this software ("Python") in source or binary form and

its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python alone or in any derivative version,

38

provided, however, that PSF's License Agreement and PSF's notice of copyright,

i.e., "Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,

2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Python Software Foundation;

All Rights Reserved" are retained in Python alone or in any derivative version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on

or incorporates Python or any part thereof, and wants to make

the derivative work available to others as provided herein, then

Licensee hereby agrees to include in any such work a brief summary of

the changes made to Python.

4. PSF is making Python available to Licensee on an "AS IS"

basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT

INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS

A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON,

OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material

breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any

relationship of agency, partnership, or joint venture between PSF and

Licensee. This License Agreement does not grant permission to use PSF

trademarks or trade name in a trademark sense to endorse or promote

products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python, Licensee

agrees to be bound by the terms and conditions of this License

Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an

39

office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the

Individual or Organization ("Licensee") accessing and otherwise using

this software in source or binary form and its associated

documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License

Agreement, BeOpen hereby grants Licensee a non-exclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform

and/or display publicly, prepare derivative works, distribute, and

otherwise use the Software alone or in any derivative version,

provided, however, that the BeOpen Python License is retained in the

Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS"

basis. BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT

INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE

SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS

AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY

DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material

breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all

respects by the law of the State of California, excluding conflict of

law provisions. Nothing in this License Agreement shall be deemed to

create any relationship of agency, partnership, or joint venture

between BeOpen and Licensee. This License Agreement does not grant

permission to use BeOpen trademarks or trade names in a trademark

sense to endorse or promote products or services of Licensee, or any

third party. As an exception, the "BeOpen Python" logos available at

http://www.pythonlabs.com/logos.html may be used according to the

permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee

agrees to be bound by the terms and conditions of this License

Agreement.

40

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National

Research Initiatives, having an office at 1895 Preston White Drive,

Reston, VA 20191 ("CNRI"), and the Individual or Organization

("Licensee") accessing and otherwise using Python 1.6.1 software in

source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI

hereby grants Licensee a nonexclusive, royalty-free, world-wide

license to reproduce, analyze, test, perform and/or display publicly,

prepare derivative works, distribute, and otherwise use Python 1.6.1

alone or in any derivative version, provided, however, that CNRI's

License Agreement and CNRI's notice of copyright, i.e., "Copyright (c)

1995-2001 Corporation for National Research Initiatives; All Rights

Reserved" are retained in Python 1.6.1 alone or in any derivative

version prepared by Licensee. Alternately, in lieu of CNRI's License

Agreement, Licensee may substitute the following text (omitting the

quotes): "Python 1.6.1 is made available subject to the terms and

conditions in CNRI's License Agreement. This Agreement together with

Python 1.6.1 may be located on the Internet using the following

unique, persistent identifier (known as a handle): 1895.22/1013. This

Agreement may also be obtained from a proxy server on the Internet

using the following URL: http://hdl.handle.net/1895.22/1013".

3. In the event Licensee prepares a derivative work that is based on

or incorporates Python 1.6.1 or any part thereof, and wants to make

the derivative work available to others as provided herein, then

Licensee hereby agrees to include in any such work a brief summary of

the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS"

basis. CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT

INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON

1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS

A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1,

OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

41

6. This License Agreement will automatically terminate upon a material

breach of its terms and conditions.

7. This License Agreement shall be governed by the federal

intellectual property law of the United States, including without

limitation the federal copyright law, and, to the extent such

U.S. federal law does not apply, by the law of the Commonwealth of

Virginia, excluding Virginia's conflict of law provisions.

Notwithstanding the foregoing, with regard to derivative works based

on Python 1.6.1 that incorporate non-separable material that was

previously distributed under the GNU General Public License (GPL), the

law of the Commonwealth of Virginia shall govern this License

Agreement only as to issues arising under or with respect to

Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this

License Agreement shall be deemed to create any relationship of

agency, partnership, or joint venture between CNRI and Licensee. This

License Agreement does not grant permission to use CNRI trademarks or

trade name in a trademark sense to endorse or promote products or

services of Licensee, or any third party.

8. By clicking on the "ACCEPT" button where indicated, or by copying,

installing or otherwise using Python 1.6.1, Licensee agrees to be

bound by the terms and conditions of this License Agreement.

 ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

--

Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam,

The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that

both that copyright notice and this permission notice appear in

supporting documentation, and that the name of Stichting Mathematisch

Centrum or CWI not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior

permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

42

FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT

OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

“

Sundials (https://computing.llnl.gov/projects/sundials)

License:

“

All SUNDIALS packages are licensed under the BSD 3-Clause and are subject to the following Copyright

notice. The text from this page is included as part of the SUNDIALS source code in the files LICENSE and

NOTICE.

BSD 3-Clause License Copyright (c) 2002-2019, Lawrence Livermore National Security and Southern Methodist

University. All rights reserved. Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met: * Redistributions of source

code must retain the above copyright notice, this list of conditions and the following disclaimer. *

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution. * Neither

the name of the copyright holder nor the names of its contributors may be used to endorse or promote

products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY

THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344. This work was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States Government nor Lawrence Livermore

National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any

legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States Government or Lawrence Livermore National Security, LLC. The views and

opinions of authors expressed herein do not necessarily state or reflect those of the United States

Government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product

endorsement purposes.

“

NumPy (https://numpy.org/)

License:

https://computing.llnl.gov/projects/sundials
https://numpy.org/

43

“

Copyright (c) 2005, NumPy Developers

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided

that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the NumPy Developers nor the names of any contributors may be used to endorse or

promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

“

SciPy (https://www.scipy.org/)

License:

“

Copyright © 2001, 2002 Enthought, Inc.

All rights reserved.

Copyright © 2003-2019 SciPy Developers.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided

that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of Enthought nor the names of the SciPy Developers may be used to endorse or promote

products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

“

https://www.scipy.org/

44

Matplotlib (https://matplotlib.org/)

License:

“

License agreement for matplotlib versions 1.3.0 and later

===

1. This LICENSE AGREEMENT is between the Matplotlib Development Team

("MDT"), and the Individual or Organization ("Licensee") accessing and

otherwise using matplotlib software in source or binary form and its

associated documentation.

2. Subject to the terms and conditions of this License Agreement, MDT

hereby grants Licensee a nonexclusive, royalty-free, world-wide license

to reproduce, analyze, test, perform and/or display publicly, prepare

derivative works, distribute, and otherwise use matplotlib

alone or in any derivative version, provided, however, that MDT's

License Agreement and MDT's notice of copyright, i.e., "Copyright (c)

2012- Matplotlib Development Team; All Rights Reserved" are retained in

matplotlib alone or in any derivative version prepared by

Licensee.

3. In the event Licensee prepares a derivative work that is based on or

incorporates matplotlib or any part thereof, and wants to

make the derivative work available to others as provided herein, then

Licensee hereby agrees to include in any such work a brief summary of

the changes made to matplotlib .

4. MDT is making matplotlib available to Licensee on an "AS

IS" basis. MDT MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, MDT MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF MATPLOTLIB

WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. MDT SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF MATPLOTLIB

 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR

LOSS AS A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING

MATPLOTLIB , OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF

THE POSSIBILITY THEREOF.

https://matplotlib.org/

45

6. This License Agreement will automatically terminate upon a material

breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any

relationship of agency, partnership, or joint venture between MDT and

Licensee. This License Agreement does not grant permission to use MDT

trademarks or trade name in a trademark sense to endorse or promote

products or services of Licensee, or any third party.

8. By copying, installing or otherwise using matplotlib ,

Licensee agrees to be bound by the terms and conditions of this License

Agreement.

License agreement for matplotlib versions prior to 1.3.0

==

1. This LICENSE AGREEMENT is between John D. Hunter ("JDH"), and the

Individual or Organization ("Licensee") accessing and otherwise using

matplotlib software in source or binary form and its associated

documentation.

2. Subject to the terms and conditions of this License Agreement, JDH

hereby grants Licensee a nonexclusive, royalty-free, world-wide license

to reproduce, analyze, test, perform and/or display publicly, prepare

derivative works, distribute, and otherwise use matplotlib

alone or in any derivative version, provided, however, that JDH's

License Agreement and JDH's notice of copyright, i.e., "Copyright (c)

2002-2011 John D. Hunter; All Rights Reserved" are retained in

matplotlib alone or in any derivative version prepared by

Licensee.

3. In the event Licensee prepares a derivative work that is based on or

incorporates matplotlib or any part thereof, and wants to

make the derivative work available to others as provided herein, then

Licensee hereby agrees to include in any such work a brief summary of

the changes made to matplotlib.

4. JDH is making matplotlib available to Licensee on an "AS

IS" basis. JDH MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, JDH MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

46

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF MATPLOTLIB

WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. JDH SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF MATPLOTLIB

 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR

LOSS AS A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING

MATPLOTLIB , OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF

THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material

breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any

relationship of agency, partnership, or joint venture between JDH and

Licensee. This License Agreement does not grant permission to use JDH

trademarks or trade name in a trademark sense to endorse or promote

products or services of Licensee, or any third party.

8. By copying, installing or otherwise using matplotlib,

Licensee agrees to be bound by the terms and conditions of this License

Agreement.

“

OpenMP (https://www.openmp.org/)

(Implementation in the GNU GCC compiler - MinGW-w64 distribution, license covered below)

PyInstaller (https://www.pyinstaller.org/index.html)

Licensed under GPL, but only used for building (exception in the license allowing that).

See more: https://www.pyinstaller.org/license.html

https://www.openmp.org/
https://www.pyinstaller.org/index.html
https://www.pyinstaller.org/license.html

47

Inno Setup (https://jrsoftware.org/isinfo.php)

License:

“

Inno Setup License

==================

Except where otherwise noted, all of the documentation and software included in the Inno Setup

package is copyrighted by Jordan Russell.

Copyright (C) 1997-2020 Jordan Russell. All rights reserved.

Portions Copyright (C) 2000-2020 Martijn Laan. All rights reserved.

This software is provided "as-is," without any express or implied warranty. In no event shall the

author be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial

applications, and to alter and redistribute it, provided that the following conditions are met:

1. All redistributions of source code files must retain all copyright notices that are currently in

 place, and this list of conditions without modification.

2. All redistributions in binary form must retain all occurrences of the above copyright notice and

 web site addresses that are currently in place (for example, in the About boxes).

3. The origin of this software must not be misrepresented; you must not claim that you wrote the

 original software. If you use this software to distribute a product, an acknowledgment in the

 product documentation would be appreciated but is not required.

4. Modified versions in source or binary form must be plainly marked as such, and must not be

 misrepresented as being the original software.

Jordan Russell

jr-2020 AT jrsoftware.org

https://jrsoftware.org/

“

https://jrsoftware.org/isinfo.php

48

In addition, CERRES relies on the GNU GCC compiler (https://gcc.gnu.org/) as an external program

for dynamically-generated code compilation. The compiler is included in the MinGW-w64

distribution (http://mingw-w64.org/doku.php), which is bundled in the CERRES installer and installed

automatically under the “<CERRES installation folder>/cvode_execution/mingw_libs/mingw” path.

CERRES invokes this program via command-line arguments, and as such the GNU GCC compiler is not

a part of CERRES but a separate program, having its own GNU GNU GPLv3+ license, as displayed

below. Users that already have a GCC compiler installed on their system, can likely remove this

folder from the CERRES installation folder to save space, the requirements being that the GCC

targets w64 architecture and is on the system PATH. Note that this has not been thoroughly tested,

so it is advised to back-up the bundled files, run the CERRES test from the GUI, and finally delete

them only after confirming that everything works correctly. The MinGW-w64 license is included

below:

“

MinGW-w64 licensing

The copyright and license notices have been divided in two files:

The notices in COPYING.MinGW-w64.txt (this file) apply only to

MinGW-w64 itself. These don't apply to the binaries built with

MinGW-w64 unless you specifically tell MinGW-w64 to link against

these parts, for example, by enabling profiling code.

In addition to the notices in this file, also the notices in

COPYING.MinGW-w64-runtime.txt apply to MinGW-w64. Some (possibly

all) notices in that file may apply also to the binaries built with

this version of MinGW-w64. The idea is that if you create binary

packages of your software with MinGW-w64, you can simply copy

COPYING.MinGW-w64-runtime.txt into your package to fulfill the

license requirements of the MinGW runtime.

If you think that not all notices apply to your package and want to

remove some of them, note that, for example, the gdtoa files always

get linked in if you use any printf-like function. So usually it is

easiest and safest to just keep all the notices.

====================

GCC and GNU binutils

====================

Copyright (C) Free Software Foundation

https://gcc.gnu.org/
http://mingw-w64.org/doku.php

49

License: GNU GPLv3+ (see the file COPYING.GPLv3)

==============

Profiling code

==============

Copyright 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.

License: GNU GPLv2+ (see the file COPYING.GPLv2)

 * * * * * * *

Copyright (c) 1982, 1983, 1986, 1992, 1993

 The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in the

 documentation and/or other materials provided with the distribution.

4. Neither the name of the University nor the names of its contributors

 may be used to endorse or promote products derived from this software

 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

=======================

DirectX and DDK headers

=======================

DirectX and DDK headers are under GNU LGPLv2.1+ (see the file

COPYING.LGPLv2.1) and copyrighted by various people. Using these

headers doesn't make LGPLv2.1 apply to your code, because these

headers files contain only data structure definitions, short

macros, and short inline functions. Here is the relevant part

from LGPLv2.1 section 5 paragraph 4:

50

 If such an object file uses only numerical parameters, data

 structure layouts and accessors, and small macros and small

 inline functions (ten lines or less in length), then the use

 of the object file is unrestricted, regardless of whether it

 is legally a derivative work.

====================

libmangle and gendef

====================

Copyright (c) 2009 mingw-w64 project

Contributing authors: Kai Tietz, Jonathan Yong

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the "Software"),

to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

====

PSEH

====

Copyright (c) 2004-2008 KJK::Hyperion

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the "Software"),

to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

51

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

“

